- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Daskalakis, Constantinos (1)
-
Pan, Qinxuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show that the square Hellinger distance between two Bayesian networks on the same directed graph, G, is subadditive with respect to the neighborhoods of G. Namely, if P and Q are the probability distributions defined by two Bayesian networks on the same DAG, our inequality states that the square Hellinger distance, H2(P,Q), between P and Q is upper bounded by the sum, ∑vH2(P{v}∪Πv,Q{v}∪Πv), of the square Hellinger distances between the marginals of P and Q on every node v and its parents Πv in the DAG. Importantly, our bound does not involve the conditionals but the marginals of P and Q. We derive a similar inequality for more general Markov Random Fields. As an application of our inequality, we show that distinguishing whether two Bayesian networks P and Q on the same (but potentially unknown) DAG satisfy P=Q vs dTV(P,Q)>ϵ can be performed from Õ (|Σ|3/4(d+1)⋅n/ϵ2) samples, where d is the maximum in-degree of the DAG and Σ the domain of each variable of the Bayesian networks. If P and Q are defined on potentially different and potentially unknown trees, the sample complexity becomes Õ (|Σ|4.5n/ϵ2), whose dependence on n,ϵ is optimal up to logarithmic factors. Lastly, if P and Q are product distributions over {0,1}n and Q is known, the sample complexity becomes O(n‾√/ϵ2), which is optimal up to constant factors.more » « less
An official website of the United States government

Full Text Available